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Optimized perturbation approach with a Legendre transformation to a dissipative
system: Correlation functions of a Morse oscillator

Yoko Suzuki and Yoshitaka Tanimura
Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan

~Received 27 April 1998; revised manuscript received 18 September 1998!

We apply the optimized perturbation theory~OPT! to study the dynamics of a dimer molecule system in
condensed phases described by a Morse potential system coupled to a heat bath. The OPT combines the
techniques based on the variational principle and the perturbative expansion. The first-order approximation of
the OPT agrees with Feynman’s variational theory developed for the polaron problem@Statistical Mechanics:
A Set of Lectures~Benjamin, London, 1972!#. The OPT makes it possible to deal with an anharmonic potential
system in a nonperturbative way. Combined with the inversion method, which is a technique to carry out the
Legendre transformation, we take into account the ansymmetry of the potential effectively. We then calculate
the absorption spectrum of the molecule system, which relates to a two-time correlation function of a nuclear
coordinate.@S1063-651X~99!04702-9#

PACS number~s!: 05.70.Ln, 11.10.2z, 33.20.2t
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I. INTRODUCTION

Since the work by Leggett and co-workers@1,2#, the dy-
namical roles of a quantum system in a dissipative envir
ment has been considered in a large number of proble
e.g., chemical reactions@3#, electron transfer@4#, and nonlin-
ear spectroscopy@5#. The system in a condensed phase c
be modeled by a main system and a surrounding envi
ment ~a bath system!. The interaction between the syste
and the bath causes dissipation on the main system. In m
realistic cases, the fluctuation induced by the environm
follows the central limit theorem. A harmonic oscillator ba
gives a Gaussian distribution for the density matrix@6#.
Therefore, the harmonic oscillator bath can be a good mo
of the environment@7#. The main system is described by
particle moving in a potential. If the potential is harmon
this model agrees with the quantum Brownian oscillator s
tem and the dynamical variables such as the two- and th
time correlation functions of the coordinate can be calcula
analytically using path-integral techniques@8,9#. For general
potential systems, where most of the important quantum
namics such as tunneling takes place, however, one ca
calculate the dynamical variables analytically. In order
deal with such problems, one has to use the equation
motion for the reduced density matrix. Such an equation
obtained by tracing out the bath degrees of freedom thro
the projection operator method or the path integral meth
The dynamical variables can be calculated using a direc
tegration of these equations of motion. Examples of s
an equation involve the quantum master equation@6#, the
Redfield equation@10,11#, and the quantum Fokker-Planc
equation @12,13#. The quantum master equation and t
Redfield equation are the equations of motion for the redu
density in the energy state representation. They can be
rived by assuming the linear-linear or the rotating wave fo
of the system-bath interaction with the white noise appro
mation. For the linear-linear interaction, it has been assum
that the spectral distribution of the bath is Ohmic and
bath temperature is high~the white noise approximation!.
PRE 591063-651X/99/59~2!/1475~14!/$15.00
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Thus one cannot use this equation of motion to study a
temperature system where quantum dynamics plays a
For the rotating wave interaction case, one does not have
temperature limitation. However, the rotating wave appro
mation may differ from the dynamics that is originally d
scribed by the linear-linear system-bath interaction. In ad
tion to this circumstance, these two equations of mot
cannot treat the continuous energy states that are involve
the Morse potential system as the dissociation states.
such dissociative systems, the quantum Fokker-Planck e
tion is easy to apply. The quantum Fokker-Planck equatio
the equation of motion for the reduced density matrix in t
coordinate space or the Wigner representation. This equa
in principle describes the same dynamics as the former
equations if the system-bath interaction is linear-linear; th
it inherits the same high-temperature limitation. This limit
tion can be partially relaxed by assuming a Gaussi
Markovian noise bath instead of a Gaussian white noise b
@14,15#. This quantum Fokker-Planck equation for
Gaussian-Markovian bath has the capability of dealing w
any shape potential surfaces at relatively low temperatu
However, solving such equations of motion for vario
physical conditions is computationally very expensive. T
spectral distribution of the bath is also limited to the case
Ohmic dissipation with a Lorentzian cutoff. In addition,
does not offer much insight into the underlying dynam
from the numerical results. Thus handy analytical solutio
that have wider applicability and can supplement the num
cal results are called for.

In this paper we employ optimized perturbation theo
~OPT! to calculate analytically the dynamical variable of th
Morse potential@16# system in a dissipative environmen
The Morse potential system is anharmonic and has disso
tion states at higher energy levels. It has been used
model of many molecular systems, especially for dimer m
ecules. The Morse potential system without coupling to
bath can be studied analytically by solving the Schro¨dinger
equation@17–19# or by performing the path integration@20–
24#. These approaches are performed in the coordinate
resentation@17,20,21,23# or the coherent state representati
1475 ©1999 The American Physical Society
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@18,22,23#. The latter representation is associated with
reducible representation of Lie groups@25#. We are inter-
ested in studying the dynamics of molecules in the c
densed phase since many important chemical processes
a role in liquids. To include the effects of surrounding mo
ecules, we attached the Morse potential system to the b
However, if the system is coupled to the bath, one can
solve the problem exactly. Here we have adapted the p
integral formalism to make approximations. We used
double time path formalism@26–34# to deal with the two-
time correlation functions of coordinates, which are t
physical observables of various experiments including fe
tosecond nonlinear spectroscopy. All heat-bath effects w
taken into account by the Feynman-Vernon influence fu
tional @28#. In path-integral formalism, we can classify th
two types of approaches depending on the method of
proximation. The first one is perturbative. We can deal w
the anharmonic part of the Hamiltonian or Lagrangian a
perturbation. However, this approach is limited to the c
where the anharmonicity is weak and one has to obtain
nth-order correlation functions for anharmonic potenti
analytically @35,36#. The other approach is nonperturbativ
An example of this approach involves the resummation
the infinite number of perturbative terms, which introduc
the nonperturbative ground state, e.g., the state written a
coherent sum of the modes excited above the old states@37–
40#. In this paper we apply the OPT, which was developed
calculate the energy eigenvalues or the wave functions@41–
43#. The OPT introduces an artificial parameterd that does
not appear in the original problem. One defines an actionSd ,
which interpolates between the theory we hope to solve, w
an actionS, and another actionS0(m), which must be solv-
able and is chosen to reflect the physical properties of
original actionSwith the use of adjustable parametersm. We
then perturbatively expand the Green’s function forS by
d(S2S0) in powers ofd and truncate at a given order. B
assuming that the expanded and truncated Green’s func
can be evaluated by specifyingm to optimize the trial action,
we evaluate the Green’s function as a sum of expanded
fitted Green’s functions. The first-order OPT agrees w
Feynman’s variational theory, which has been used to so
the polaron problem@44#. The second-order OPT gives th
correction of it. Thus the OPT can be regarded as the ge
alization of Feynman’s variational theory. In this paper w
apply the OPT to calculate the two-time correlation functio
of the Morse potential system in the dissipative environme

In addition to the simple OPT analysis, we also tested
OPT with the Legendre transformation in the framework
the field theory in order to make the OPT more efficie
even in the lowest order. We use the inversion method
performing the Legendre transformation. The Legen
transformation converts the generating functionalW@J#,
which is the functional of the auxiliary sourceJ, to the an-
other functional G@f#, where f[dW@J#/dJ. In general
cases,W@J# is perturbatively obtained within the finite-orde
calculation. On the other hand,G@f# is obtained by making a
resummation of the diagrams ofW@J#. The mathematica
structure of the convertedG@f# is quite different from origi-
nal W@J#. Thus we can approximateW@J# in a different
manner by approximatingG@f# instead ofW@J# itself and by
reconverting it toW@J# through the relation betweenW@J#
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and G@f#. The inversion method is a systematic way
evaluateW@J# throughG@f# for a system with some pertur
bation. BothG@f# andW@J# can be expanded perturbatively
The inversion method gives simple relations between
nth-order term ofG@f# and the firstn terms of W@J# by
regardingf as a order of unity. We apply this technique fo
the d expansion of the OPT.

In Sec. II we introduce the nonequilibrium generatin
functional @45#. The two nonperturbative methods, i.e., th
OPT and the method of Legendre transformation, are
viewed in Secs. III and IV, respectively. We then apply t
OPT and the OPT with the inversion method in Sec. V. T
numerical results for these two approaches are shown in S
VI. Section VII is devoted to a conclusion and some r
marks. A result of the inversion method that is a technique
carry out the Legendre transformation is reviewed in Appe
dix A. The relation between the results of@8# and a propa-
gator is given in Appendix B. The calculation of the fre
energy at zero temperature is written in Appendix C.

II. NONEQUILIBRIUM GENERATING FUNCTIONALS

Consider a system described by the Hamiltonian opera
Ĥ. We are interested in calculating the expectation value
Ôi defined by

^Ôi& t5Tr$r̂ I Û†~ t,t I !Ô
i Û~ t,t I !%, ~2.1!

Û~ t,t I !5T expS 2
i

\ E
t I

t

ds Ĥ~s! D , ~2.2!

where the symbolT implies the time ordering operation an
Â† denotes the adjoint of an operatorÂ. The matrixr̂ I is a
density operator at the initial timet I . To obtain such an
expectation value, it is convenient to introduce a tim
dependent external forceJi(t) that couples toÔi . Here and
in what follows, the indicesi represent the set of indices o
the field components.Ji(t) is an auxiliary source to be set t
zero at the end of the calculation. The total Hamiltoni
therefore depends on time and is expressed as

ĤJ~ t !5Ĥ2(
i

Ji~ t !Ôi . ~2.3!

Let us introduce a generating functional as an extens
of the Gibbs free energy. Assuming an equilibrium initi
distribution, i.e.,r̂ I5exp(2bĤ), we introduce the imaginary
time t, which is defined ast5t I2 i\t, 0<t<b. We con-
sider the generating functionalW@J1 ,J2 ,J3# with three kinds
of sourcesJ1

i , J2
i , andJ3

i ;

expS i

\
W@J# D5Tr@r I

J3UJ2

† ~ tF ,t I !UJ1
~ tF ,t I !#, ~2.4!

ÛJa
5T expS 2

i

\ E
t I

tF
dtH Ĥ2(

i
Ja

i ~ t !Ôi J D
[T expS 2

i

\ E
t I

tF
dt$ĤJa

~ t !% D , ~a51,2!, ~2.5!
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r I
J35Tt expS 2E

0

b

dt ĤJ3
~t! D , ~2.6!

ĤJ3
5Ĥ2 (

i
J3

i ~t!Ôi . ~2.7!

The final timetF is taken to be sufficiently large andt I,t
,tF . The symbolTt stands fort ordering. The real time
path and the imaginary one are represented by suffixea
51,2 anda53, respectively. This enables one to study t
connection with the equilibrium free energy.

Here we introduce the notion of the complex contour
time integration in order to write various formulas in a com
pact way@29,33,34#. The contour time integral*Cdt extends
over the contourC, which runs fromC1 to C2 to C3 ~see Fig.
1!. Each path is defined to beC1 : t I→tF and C2 : tF→t I
~return path! and C3 : t I→t I2 ib\ ~imaginary time path!.
The contour time ordering operatorTC orders the time se
quence according to the location of the operator on the c
tour. Furthermore, we use the notation

J~ t !5Ja~ t ! if t is on Ca ~a51,2,3!. ~2.8!

Assuming the equilibrium initial distribution, we can the
write

expS i

\
W@J1 ,J2 ,J3# D[expS i

\
W@J# D

5Tr TC expS 2
i

\ E
C
dt ĤJ~ t ! D ,

~2.9!

ĤJ~ t ![ĤJa
~ t !5Ĥ2(

i
Ja

i ~ t !Ôi ~a51,2,3!.

~2.10!

For later convenience, we introduce the contourd function,
the contouru function, and the contour functional differen
tiation defined by

E
C
dt dC~ t2t8! f ~ t !5 f ~ t8!, ~2.11!

uC~ t2t8!5E
C

t

dt9dC~ t92t8!, ~2.12!

d f ~ t !

d f ~ t8!
5dC~ t2t8!, ~2.13!

respectively.

FIG. 1. Contour pathsC1 , C2 , andC3 .
r

n-

In the path-integral representation, Eq.~2.9! is described
by

expS i

\
W@J# D5NE DQ expH i

\

3S SC@Q#1(
i
E

C
dt Ji~ t !Oi~ t ! D J ,

~2.14!

whereN is the normalization constant andSC is the action
with the contour path time integration of the Lagrangi
L derived from Ĥ: SC5*Cdt L5*C1

dt L1*C2
dt L

1*C3
dt L.

Using the generating functional, Eq.~2.1! can be ex-
pressed as

^Ôi~ t !&5
dW@J1 ,J2 ,J3#

dJ1
i ~ t ! U

J15J25J350

52
dW@J1 ,J2 ,J3#

dJ2
i ~ t ! U

J15J25J350

5
i

\

dW@J1 ,J2 ,J3#

dJ3
i ~t!

U
J15J25J350

. ~2.15!

The functionalW@J1 ,J2 ,J3# itself is not a physical quan
tity. It is introduced just for mathematical convenience
calculate expectation values for nonequilibrium process
All the physical quantities~as far as they are related to th
expectation values that we are probing by introducing
source term! can be extracted from it. For example, the tw
time correlation function̂Ôi(t)Ôj (t8)& is derived by taking
the second derivative ofW@J1 ,J2 ,J3# with respect toJ(t).
Note that we use three paths@29,33,34#, an extention of the
double path formalism@26,27,30# by including the imaginary
time path, to take into account the effects of anharmonic
in the initial equilibrium state.

III. OPTIMIZED PERTURBATION THEORY

In this section we briefly explain the OPT for a syste
with an actionS. The OPT employs a modified action de
fined by

Sd5~12d!S0~m!1dS5S0~m!1d„S2S0~m!…, ~3.1!

whereS0(m) is the action for a solvable model and includ
the arbitrary~variational! parametersm. For d51, the modi-
fied action agrees with the original one, whereas ford50,
the solvable one. We are interested in the time evolution o
density matrix with the initial inverse temperatureb
51/kBT.

The generating functional~2.14! for the action is defined
by
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i

\
Wd@J#5 ln E DQ expF i

\ S SCd@Q#

1(
i
E

C
dtJi~ t !Oi~ t ! D G . ~3.2!

The n-point Green’s function is then expressed as

Wd
~n!~ t1 ,...,tn!5

dnWd@J#

dJC~ t1!¯dJC~ tn!

5S i

\ D ~n21!

^TCÔ~ t1!¯Ô~ tn!&J,d

~n50,1, . . .!, ~3.3!

where XC(t) means that X1(t), X2(t), and X3(t)
5(\/ i )X(t) for tPC1 , tPC2 , and tPC3 , respectively.
The symbol̂ Â&J,d in Eq. ~3.3! is regarded as the expectatio
value of the operator Â for the action SCd
1( i*Cdt Ji(t)Oi(t). By treating the termd(SC2SC0) as a
perturbation,Wd

(n)(t1 ,...,tn) is expanded in the powers ofd,

Wd
~n!~ t1 ,...,tn![(

k50

`

dkWd@k#
~n! ~ t1 ,...,tn!. ~3.4!

Differentiation ofWd
(n) with respect tom gives

]

]m
Wd

~n!~ t1 ,...,tn!5~12d!K TC

]Ŝ0~m!

]m
Ô~ t1!¯Ô~ tn!L

J,d

,

~3.5!

whereŜ0(m) is the action in the operator form. If we setd to
unity, then we obtain the following relation for allm:

]

]m
Wd51

~n! ~ t1 ,...,tn!5 (
k50

` S ]

]m
Wd51@k#

~n! ~ t1 ,...,tn! D50.

~3.6!

In practice, the perturbative expansion in powers ofd will be
truncated at some order. In such a case,Wd51@k#

(n) (t1 ,...,tn)
can have a residual dependence on the parameterm:

]

]m
Wd51

~n!,i~ t1 ,...,tn!5 (
k50

i S ]

]m
Wd51@k#

~n! ~ t1 ,...,tn! DÞ0.

~3.7!

Then we consider different criteria to fixm. One of them is
the principle of minimal sensitivity, which is a way of opt
mizing the theory in whichWd@k#

(n) is to be evaluated at th
point whereWd@k#

(n) is not sensitive to small variations inm:
]Wd@k#

(n) (m)/]m50. If there is no valuem satisfying this con-
dition, one seeks the point at which]Wd@k#

(n) (m)/]m has the
minimal sensitivity to a variation ofm. With this procedurem
can be regarded as an adjustable parameter to fit the solv
model to the original one.

If one setsn50, Eq. ~3.2! becomes
ble

i

\
Wd@J#5 ln E DQ expS i

\
SC0

J @Q# D
1

i

\
d^SC2SC0&J,01

d2

2 S i

\ D 2

3$^~SC2SC0!2&J,02@^SC2SC0&J,0#
2%1¯ ,

~3.8!

where^X̂&J,0 is the expectation value ofX̂ for the action

SC0
J 5SC01(

i
E

C
dt Ji~ t !Oi~ t !.

In the equilibrium system, the first and second terms on
right-hand side of Eq.~3.8! are equivalent to the upper boun
for Feynman’s variational approximation, so the first-orded
expansion of the OPT corresponds to Feynman’s variatio
approximation for a trial actionSC0 . The higher-order terms
can be regarded as corrections to Feynman’s approxima

The key to this approach is the choice ofSC0 . One may
obtain unphysical results if the trial actionS0 is not suitable.
In this paper we will also employ the Legendre transform
tion, which converts the generating functionalJ to the new
functional off i[^Ôi& in order to make the OPT more effi
cient.

IV. LEGENDRE TRANSFORMATION OF
A GENERATING FUNCTIONAL

Let us consider the Legendre transformation defined
the contour time path by

G@f#[G@f1 ,f2 ,f3#5W@J#2(
i
E

C
dt JC

i ~ t !fC
i ~ t !,

~4.1!

where

fC
i ~ t ![

dW@J#

dJC
i ~ t !

. ~4.2!

The inverted relation of Eq.~4.2! is therefore

JC
i ~ t !52

dG@f#

dfC
i ~ t !

. ~4.3!

SubstitutingJC
i (t)50 into Eq.~4.3!, we obtain

05
dG@f#

dfC
i ~ t !

. ~4.4!

The solution of Eq.~4.4! is written asf i (0)(t) below. The
function f i (0)(t) is the solution of Eq.~4.4! at JC

i (t)50,
which corresponds to the solution for the original actionS0 .
At the pointf i(t)5f i (0), it is known that

i

\
W@J50#5

i

\
G@f~0!5f@J50##52bF, ~4.5!
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whereF is the free energy. In the solution of Eq.~4.4!, f i (0)

is not unique andW@J50# is a multivalued function. We
adapt the notation below, for example,

Wa1a2

~2!; i 1i 2~ t1 ,t2![
d2W

dJa1

i 1 ~ t1!dJa2

i 2 ~ t2!
. ~4.6!

For J15J25J3 , we introduce a special notation defined
the superscriptJ:

Wa1a2

~2!J; i 1i 2~ t1 ,t2![@Wa1a2

~2!; i 1i 2~ t1 ,t2!#J1~ t !5J2~ t !5J3~ t !5J~ t ! .

~4.7!

We also use the superscriptJ for G, i.e., Ga1a2

(2)J; i 1i 2, but it

implies that it is evaluated at the value off(t) satisfying Eq.
~4.2!. The superscript 0 then implies the stationary value
f(t) corresponding toJ15J25J350. For example,

Ga1a2

~2!0;i 1i 2~ t1 ,t2![@Ga1a2

~2!; i 1i 2~ t1 ,t2!#f1~ t !5f2~ t !5f3~ t !5f~ t ! ,

~4.8!

where we used the notation of Eq.~4.6! for G. Higher de-
grees of differentiation ofW or G are also expressed in th
notation. In such a case,F is estimated on the smallest min
mal point of (i\/b)G@f (0)#. Several important relations in
volving W@J# and G@f# in the double path formalism ar
summarized in Appendix B of@45#. The relations in the
three-time path can be derived by using the same proce
of @45# and we can get the same equations as in Append
of @45# even for the three-time path. The physical quant
calculated throughW@J# is evaluated on the perturbativ
ground state. In the OPT this ground state is obtained fr
the trial actionS0 . Therefore, ifS0 does not have a propert
found in the original action, the result derived fromW@J#
lacks information of this property. For instance, the origin
action for the Morse potential is asymmetric under the tra
formationQ→2Q; however, the harmonic trial action tha
we will use in Sec. V is symmetric and the results obtain
from this action may not show asymmetric physical prop
ties in the lowest-order OPT. Using the Legendre trans
mation, however, we can evaluate the physical quantities
f i (0), which involves an infinite number of perturbative e
pansion terms not on the perturbative ground state. Since
procedure corresponds to a resummation ofW@J#, we can
recover the properties of the original action that are not
cluded in the formW@J#.

The generating functionalW@J# is evaluated by using Eq
~2.4!. Physical quantities, for examplêÔi& t , can be calcu-
lated from G@f# through W@J# using the relation betwee
G@f# andW@J# ~see@45#!.

Up to now there are three ways of performing t
Legendre transformation to obtainG@f#. The first is the func-
tional method where the auxiliary field is introduced by
Hubbard-Stratonvich transformation@46–48#. The second is
the method relying on the resummation of graphs@49,50#.
These two methods can be applied only to the limited cas
which the operatorÔ is coupled to the sourceJ. The third
method is the inversion method@51#. The inversion method
consists of perturbative calculations and an inversion of
f

re
B

m

l
-

d
-
r-
n

is

-

in

5f@J# to J5J@f# using the Legendre transformation. Th
type of manipulation can readily be generalized from t
equilibrium case to the nonequilibrium case by introduci
contour time integration. The result of the inversion meth
in the contour time path is presented in Appendix A. Aft
G@f# is evaluated using the inversion method,W(n)@J# is
obtained fromG (n)@f# through a relation that is given in
Appendix B of@45#. In the following we show how one can
apply the inversion method to calculate the correlation fu
tion of the Morse potential system.

V. APPLICATION TO THE MORSE POTENTIAL SYSTEM

We now apply the OPT to a molecular system with t
massM, the coordinateQ̂, and the momentumP̂ coupled to
a heat bath. The system Hamiltonian is given by

ĤS5
P̂2

2M
1US~Q̂!, ~5.1!

whereUS(Q̂) is the molecular potential. We assume that t
heat bath consists of a set of harmonic oscillators with
coordinateq̂i and momentap̂i . The interaction between th
system and thei th oscillator is assumed to be linear with
coupling strengthci . The heat bath Hamiltonian is the
given by

ĤB1ĤSB5(
i

H p̂i
2

2mi
1

miv i
2

2 S q̂i2
ciQ̂

miv i
2D 2J . ~5.2!

The summation overi goes to infinity in order to describe
the dissipation on the molecular system. The te

( i
1
2 (ci

2Q̂i
2/miv i

2) on the right-hand side is the counterter
that cancels the unphysical divergence from the coupling
the bath degrees of freedom. The total Hamiltonian is th
expressed asĤ5ĤS1ĤB1ĤSB. We add the source term t
the Hamiltonian as

ĤJ5Ĥ2E
C
dt J~ t !Q̂. ~5.3!

By integrating over the bath coordinateqi , the generating
functional in the path-integral representationW@J# is given
by

expS i

\
W@J# D5E DQ expH i

\ S SC
~S1B!@Q#

1E
C
dt J~ t !Q~ t ! D J , ~5.4!

whereSC
(S1B)@Q# is the influence functional

SC
~S1B!@Q#5E

C
dtS M

2
Q̇~ t !22US~Q!2

1

2 (
i

ci
2

miv i
2 Q~ t !2D

1
1

2 EC
dt dt8Q~ t !Q~ t8!(

i
ci

2GC
~mi ,v i !~ t,t8!

~5.5!

andGC
(m,v)(t,t8) is the propagator of the harmonic oscillat

system and is given by
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GC
~m,v!~ t,t8!5

i

2mv

1

sinh
\bv

2

H uC~ t2t8!cosvS t2t81
ib\

2 D

1uC~ t82t !cosvS t82t1
ib\

2 D J . ~5.6!

We introduce the trial actionSC0
(S1B) in the harmonic form

as

SC0
~S1B!@Q;m#5E

C
dtS M

2
Q̇~ t !22

1

2
MmQ~ t !2

2
1

2 (
i

ci
2

miv i
2

Q~ t !2D
1

1

2 EC
dt dt8Q~ t !Q~ t8!

3(
i

ci
2GC

~mi ,v i !~ t,t8!, ~5.7!

where m is the variational parameter corresponding to
square of the frequency (m5V2). By substituting Eq.~5.7!
into Eq. ~3.8!, Wd@J# is calculated as

Wd@0#@J#5
\

i
lnE

C
DQ expS i

\
SC0

~S1B!J@Q# D
5

\

i
ln E

C
DQ expS i

\
SC0

~S1B!J50@Q# D
1

1

2 EC
ds ds8J~s!KC~s,s8!J~s8!, ~5.8!

Wd@1#@J#

5

*CDQ~SC
~S1B!@Q#2SC0

~S1B!@Q;m#!expS i

\
SC0

~S1B!J@Q# D
*CDQ expS i

\
SC0

~S1B!J@Q# D ,

~5.9!

and so forth. HereKC(s,s8) is the propagator defined by th
differential equation

E
C
dt8H S M

d2

dt2
1Mm1(

i

ci
2

miv i
2D dC~ t2t8!

2(
i

ci
2GC

~mi ,v i !~ t,t8!J KC~ t8,t9!5dC~ t2t9!. ~5.10!

The Euler-Lagrange equation derived form the act
SC

(S1B)J@Q# is the generalized Langevin equation

M
d2Q~ t !

dt2
1

dUS@Q~ t !#

dQ~ t !
1ME

t I

t

dt8g~ t2t8!
dQ~ t8!

dt8
5J~ t !,

~5.11!
e

n

where the damping kernelg(t2t8) is given by

g~ t2t8!5(
i

ci
2

Mmiv i
2

cosv i~ t2t8!

5
2

M E
0

` dv

p

I ~v!

v
cos@v~ t2t8!# ~5.12!

and I (v) is the spectral distribution function defined by

I ~v!5p(
i

ci
2

2miv i
d~v2v i !. ~5.13!

The character of the heat bath is described byI (v). In the
following we consider Ohmic dissipation

I ~v!5Mgv. ~5.14!

The friction term of Eq.~5.11! is MgQ̇ in this case. That is,
the constantg corresponds to the strength of the damping
the dissipation is Ohmic, the propagatorKC(t,t8) is derived
from Eqs.~5.10!, ~5.13!, and~5.14!. The result was given in
@8#. We show the relation betweenKC(t,t8) and the result of
@8# in Appendix B.

The system potential is chosen in the Morse poten
form

U~Q!5Ee~e22aQ22e2aQ!, ~5.15!

whereEe anda are the dissociation energy and the curvatu
of the potential, respectively. We consider the case in wh
A and a are not small and the anharmonicity plays a ma
role. The difference betweenSC

(S1B) andSC0
(S1B) is now given

by

SC
~S1B!@Q#2SC0

~S1B!@Q#

52E
C
dt $Ee~e22aQ~ t !22e2aQ~ t !!2 1

2 MmQ2~ t !%.

~5.16!

Then Eq.~5.9! reduces to

Wd@1#@J#52EeE
C
dsH expS \

i
2a2KC~s,s! D

3expS 22aE
C
dt KC~s,t !J~ t ! D

22 expS \

i

1

2
a2KC~s,s! D

3expS 2aE
C
dt KC~s,t !J~ t ! D J

1
1

2
MmE

C
dsH S \

i
KC~s,s! D

1S E
C
dt KC~s,t !J~ t ! D 2J . ~5.17!
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The system potential~5.15! is not symmetric under the
transformation Q→2Q8. This transformation can be
achieved in Eq.~5.17! by letting a→2a. It is clear, how-
ever, that Eq.~5.17! cannot involve this asymmetric featur
since we will setJ50. To overcome this difficulty without
increasing the order of thed expansion~i.e., fixing n in Wd

5( i 50
n Wd@ i #!, we perform the Legendre transformation fro

Wd@J# to Gd@f#. We apply the inversion method present
in @51#. In the present case,d corresponds tog in Eq. ~A1!
and the indexi in Eq. ~A2! to t. From the relation~A10!,
h0@f;t# is

h0@f;t#5E
C
ds KC

21~ t,s!f~s!. ~5.18!

By substituting Eqs.~5.8!, ~5.17!, and~5.18! into Eqs.~A7!
and ~A8!, the generating functionalGd@f# is calculated as

Gd@0#@f#5
\

i
ln E

C
DQ expS i

\
SC0

~S1B!J50@Q;m# D
2

1

2 EC
ds ds8f~s!KC

21~s,s8!f~s8!,

~5.19!

Gd@1#@f#52EeE
C
dtH expS 22af~ t !12

\

i
a2KC~ t,t ! D

22 expS 2af~ t !1
1

2

\

i
a2KC~ t,t ! D J

1
1

2
MmE

C
dtS \

i
KC~ t,t !1f~ t !2D . ~5.20!

The sourceJ(t) is obtained by differentiatingGd@f# with
respect tof(t),

J~ t !52
dGd@f#

dfC~ t !

5E
C
ds KC

21~ t,s!f~s!1dXEeH ~22a!

3expS 22af~ t !12a2
\

i
KC~0,0! D22~2a!

3expS 2af~ t !1
1

2
a2

\

i
KC~0,0! D J 2Mmf~ t !C.

~5.21!

In the time-independent case, the static solutionf (0) is ob-
tained as

f~0!5
3

2
a

\

i
KC~0,0!, ~5.22!

where we setd51. Inserting Eq.~5.22! into Eqs.~5.19! and
~5.20!, we obtain
Gd@f~0!#5
\

i E DQ expS i

\
SC0

J50@Q;m# D
1

\

i
bH Ee expS 2a2

\

i
KC~0,0! D

1
1

2
Mm

\

i
KC~0,0!J . ~5.23!

Various nonlinear femtosecond experiments have b
carried out for the systems described by the present mod
the Morse potential system coupled to the bath. The phys
observable in optics is the correlation function of the dipo
moment m(Q), which is expressed as a function of th
nuclear coordinateQ. Since one can expandm asm01m1Q
1¯ , what experiments are measuring is actually the co
lation function for the nuclear coordinates, such asC(t)
5 i ^@m̂„Q̂(t)…,m̂„Q̂(0)…#&; i ^@Q(t),Q(0)#&. The linear ab-
sorption spectrum denoted bys~v! is the Fourier transform
of C(t). From the above results, this is expressed as

sd~v!5Im @Wd;R
~2! ~v!#, ~5.24!

Wd;R
~2! ~v!5E

t I

tF
d~ t12t2!eiv~ t12t2!Wd;R

~2! ~ t12t2!.

~5.25!

HereWR
(2)(t,t8) is retarded Green’s function defined by

WR
~2!~ t,t8![W1,1

~2!J~ t,t8!1W1,2
~2!J~ t,t8!

5
i

\
$^T Ô~ t !Ô~ t8!&conn2^Ô~ t8!Ô~ t !&conn%

5
i

\
u~ t2t8!^@Ô~ t !,Ô~ t8!#&. ~5.26!

For the actionSd(m), we use the notationWd ; or Gd ; instead
of W or G of the equations as is shown in Appendix B
@45#. From Eqs.~5.8! and ~5.17! the second functional dif-
ferentiation ofWd is

Wd@0#;R
~2! ~ t1 ,t2!5@K11~ t1 ,t2!2K12~ t1 ,t2!#[KR~ t1 ,t2!,

~5.27!

Wd@1#;R
~2! ~ t1 ,t2!5E

t I

tF
ds KR~ t1,s!KR~s,t2!

3F2EeH ~22a!2

3expS 22aE
C
ds8KC~s,s8!J~s8!

12a2
\

i
KC~0,0! D 22~2a!2

3expS 2aE
C
ds8KC~s,s8!J~s8!

1
1

2
a2

\

i
KC~0,0! D J 1MmG . ~5.28!
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In the case of Ohmic dissipation,KC(0,0) is given by

\

i
KC~0,0!5

\

4Mz S coth
ib\l2

2
2coth

ib\l1

2 D2GV~0!,

~5.29!

where

GV~ t ![
1

Mb\ (
n>0

2\4gvne2vnt/\

~vn
21\2V2!22~\gvn!2

~ tPC, st[m!, ~5.30!

l1/2[
1

2
g6 i z, ~5.31!

SettingJ50, the second response function is derived fro
Eqs.~B1!–~B6! and ~5.27!–~5.29! as

Wd;R
~2!0~v!5

1

M

1

m2 ivg2v2
1d

1

M2

1

~m2 ivg2v2!2

3F2EeH ~22a!2 expS 2a2
\

i
KC~0,0! D

22~2a!2expS 1

2
a2

\

i
KC~0,0! D J 1Mm G .

~5.32!

Within the framework of the OPT explained in Sec. III, th
absorption spectras~v! is obtained by evaluating this ex
pression at the pointm5m0(v), where the following condi-
tion is satisfied:

S ]

]m
sd~v! D

d51

50. ~5.33!

Then setting d51 and m5m0 in Eq. ~5.32!, i.e.,
Wd51;R

(2) (v;m5m0), and taking its imaginary part, the ab
sorption spectra is given by

s~v!5Im Wd51;R
~2! ~v;m5m0!. ~5.34!

As mentioned before, this result dose not contain eno
of the asymmetric features of the potential. As a result,
absorption calculated from the above formula will not sh
the correct temperature dependence as it will be seen in
3~a! in Sec. VI. To improve the result from Eqs.~5.32! and
~5.34!, we derive the formula using both the OPT and t
Legendre transformation. First, we calculateGd;R

(2) (t1 ,t2),

Gd@0#;R
~2! ~ t1 ,t2!5 (

a51,2
~21!a~KC

21!1,a~ t1 ,t2!

[2KR
21~ t1 ,t2!, ~5.35!
h
e

ig.

Gd@1#;R
~2! ~ t1 ,t2!5d~ t12t2!F2EeH ~22a!2

3expS 22af~ t1!12a2
\

i
KC~0,0! D

22~2a!2 expS 2af~ t1!

1
1

2
a2

\

i
KC~0,0! D J 1MmG , ~5.36!

where we use the notation

GR
~2!J~ t,t8![G11

~2!J~ t,t8!1G12
~2!J~ t,t8! ~5.37!

and

KR
21~ t1 ,t2!5S M

d2

dt2
1Mm1(

i

ci
2

miv i
2D d~ t12t2!

2(
i

ci
2GR

~mi ,v i !~ t12t2!, ~5.38!

GR
~m,v!~ t2t8!5

1

2
@G~11!

~m,v!~ t2t8!2G~12!
~m,v!~ t2t8!

1G~21!
~m,v!~ t2t8!2G~22!

~m,v!~ t2t8!#

5u~ t2t8!
1

mv
sinv~ t2t8!. ~5.39!

By substituting the solution~5.22! into Eqs. ~5.38! and
~5.39!, we obtain

Gd;R
~2!0~ t1 ,t2!52KR

21~ t1 ,t2!1d d~ t12t2!

3H 22Eea
2 expS 2a2

\

i
KC~0,0! D1MmJ .

~5.40!
From the identity of Legendre transformation

E
t I

tF
dt2GR

~2!J~ t1 ,t2!WR
~2!J~ t2 ,t3!52d~ t12t3!,

~5.41!
which implies that the functionGR

(2)J(t,t8) is the inverse of
the retarded Green’s function. The response function is
culated as

Wd;R
~2!0~ t1 ,t2!5FKR

212d d~ t12t2!H 22Eea
2

3expS 2a2
\

i
KC~0,0! D1MmJ G21

5KR~ t1 ,t2!1dE dt8KR~ t1 ,t8!KR~ t8,t2!

3H 22Eea
2 expS 2a2

\

i
KC~0,0! D1MmJ

1O~d2!. ~5.42!
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This result is the renormalized form of the correlation fun
tion Wd;R

(2) (t1 ,t2) obtained through Legendre transformatio
For Ohmic dissipation, the Fourier transformation of E
~5.42! is expressed as

Wd;R
~2!0~v!5

1

M

1

m2 ivg2v2
1d

1

M2

1

~m2 ivg2v2!2

3H 22Eea
2 expS 2a2

\

i
KC~0,0! D1MmJ .

~5.43!

Then, following the prescription of the conventional OP
@see Eqs.~5.33! and ~5.34!#, we obtain the absorption spec
tra.

VI. NUMERICAL RESULTS

We now calculate the free energy and the absorp
spectra of the Morse potential system numerically using
expression given in the preceding section. We setM
566.4527 mu,Ee53649.5 cm21, and a50.6361 Å as the
ground state of the Cs2 molecule. We normalized the param
eters by the frequencyv0[A@]2U(Q)/]Q2#Q50 /M . In the
Morse potential system, this frequency is given by

FIG. 2. Temperature dependence of the free energy.~a! The
first-order OPT is shown as the solid line. The dashed line and
dotted line are the exact results of the Morse potential and
harmonic potential with the fundamental frequencyv0 , respec-
tively. ~b! The difference between the first-order OPT and the ex
result. The solid line and the dashed line denoteFOPT

(1) 2Fexact and
FOPT

(1) 2Fharmonic, respectively.
-
.
.

n
e

v05S 2Eea
2

M D 1/2

. ~6.1!

Using v0 , the physical quantities are normalized as

F̄[
F

\v0
, v̄[

v

v0
, ~6.2!

ḡ[
g

v0
, m̄[

m

v0
2 . ~6.3!

In order to see the validity of the present approach, fi
we calculate the free energy without the heat bath and c
pare with the exact solution. In this simple case, the fu
tions to be optimized are then obtained by replacingKC by
GC in Eqs. ~5.8!, ~5.17!, ~C1!, and ~5.23!. The numerical
calculations were carried out by obtaining the minimal po
in the sum of Eqs.~5.8! and~5.17! for the first-order optimi-
zation, in the sum of Eqs.~5.8!, ~5.17!, and ~C1! for the
second-order optimization and in Eq.~5.23! for the first-
order optimization with the Legendre transformation, resp
tively. To solve these problems, we use the bisection met
to search for the solution of the equation.

Figures 2 and 3 show the temperature dependence o
free energy for the Morse potential system calculated fr

e
e

ct

FIG. 3. Temperature dependence of the free energy from
first-order OPT with the Legendre transformation.~a! The first-
order OPT with the Legendre transformation is shown as the s
line. The dashed line and the dotted line have the same meanin
in Fig. 2~a!. ~b! The difference between the first-order OPT with t
Legendre transformation and the exact result. The solid line and
dashed line denote FOPT1Legendre2Fexact and FOPT1Legendre

2Fharmonic respectively.
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different approaches:~i! the exact result,~ii ! the first-order
optimized perturbation,~iii ! the first-order optimized pertur
bation with the Legendre transformation, and, as a refere
we have presented~iv! the exact calculation for the harmon
potential with the frequencyv0 . As can be seen from Fig
2~b!, the discrepancy between the exact result and the
proximated one becomes large for higher temperatures.
result from the OPT with the Legendre transformation in F
3, however, agrees with the exact one for all temperat
The free energy at the zero temperature (b51/kBT→`) is
summarized in Table I. In addition to the cases in Table I,
have presented the result calculated from the second-o
optimization theory. Note that the ground state energyE
agrees with the free energy at the zero temperature. As
be seen, the result form the first-order OPT is closer to
harmonic one. This is because we chose the harmonic sy
as the trial action. The results from OPT improve if we i
clude the second-order perturbation. However, even wi
the framework of the first-order approximation, we can o
tain the same accuracy with use of the Legendre transfor
tion. Since the calculation from the second-order OPT
much harder than the one from the first-order OPT with
Legendre transformation, hereinafter we concentrate
analysis on the first-order OPT and the first-order OPT w
the Legendre transformation. Note that in the first-ord
OPT, there is no point where the condition]Wd

0 /]m50 is
satisfied if the temperature is very high. The reason for thi
attributed to the dissociation states of the Morse poten
This situation may be improved if we take into account t
higher-order derivatives ofWd

(0) . This will be the next step
of the present study.

We include the heat bath. The equations to be optimi
are then given by Eqs.~5.8!, ~5.17!, and ~5.23!. The linear
absorption spectrum that is the Fourier transformation of
two-time correlation function of the coordinate can be eva
ated by searching for the minimal point of Eq.~5.32! or
~5.43!. Figure 4 shows the linear absorption spectrum
different temperatures. Figure 4~a! is calculated from the
first-order OPT, whereas Fig. 4~b! is calculated from the
first-order OPT with the Legendre transformation. In t
Morse potential, the energy between adjacent levelsEn11
2En , whereEn is the nth energy level, decreases with in
creasing quantum number. Therefore, at higher temperatu
the Morse system shows a smaller resonant frequency
was observed in Ref.@13#. As can be seen in Fig. 4~a!, how-
ever, the peak shifts to the blue with increasing temperat
This unphysical result is due to the choice of the trial fun
tion. As it was pointed out before, the Morse potential

TABLE I. Comparison between the exact solution and the
merical result of the ground-state energy through OPT.

Energy Numerical result

Eexact52
\2a2

2M H S 2MEe

a2\2 D 1/2

2
1

2J 2

2721.1181310222 J

Eharmonic52Ee1
1
2 \v0 2721.1104310222 J

EOPT
(1) 2721.1043310222 J

EOPT
(2) 2721.1166310222 J

EOPT1Legendre 2721.1158310222 J
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asymmetric for the transformationQ→2Q. However, the
trial action ~5.7! is symmetric. On the other hand, if on
performs a Legendre transformation, the asymmetry of
potential can be taken into account through the higher-or
perturbations and thus the approximation will be improv
dramatically without increasing the order of calculation.

Here we should note the case in which the trial action
chosen as the shifted harmonic potential (M /2)m(Q2j)2,
wherem and j are the variational parameters instead of t
harmonic potential (M /2)mQ2 in Eq. ~5.7!. In the first-order
optimized perturbation, the free energy is closer to the ex
one than the result from the trial action~5.7!. However, the
peak of the absorption spectra shifts the same amount a
Fig. 4~a!. This indicates that the introduction of anoth
variational parameter does not always improve the resum
tion of the terms in the ordinary perturbation expansion.

From the quantum Fokker-Plank equation approach@13#,
it was shown that the width of the peak becomes larger as
temperature increases. However, the present calculation
not show such a change. The overtone peak, which is the
peak caused by the anharmonicity of potential loca
around twice the fundamental frequency (2v0), was not ob-
served. This is because the first-order calculation gives o
the type of self-energy in Fig. 5. Here we remark that t
self-energyS is defined by the Schwinger-Dyson equation

GC~ t1 ,t2!5KC~ t1 ,t2!

1E
C
ds1ds2KC~ t1 ,s1!SC~s1 ,s2!GC~s2 ,t2!,

~6.4!

FIG. 4. Linear absorption spectra for the different temperatu
calculated from~a! the first-order OPT and~b! the first-order OPT
with the Legendre transformation.
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where we write the equation in the contour time-path fo
and theGC is the full propagator. In order to obtain th
overtone poles, we have to include the type of self-energ
Fig. 6, which was missing in the present order of the cal
lation.

VII. CONCLUSION AND REMARKS

In this paper we have developed the optimized pertur
tion theory for a system coupled to a dissipative enviro
ment. The first-order OPT is equivalent to Feynman’s va
tional theory and the higher order OPT can be regarded a
correction. We have calculated the free energy for a Mo
potential system and have shown that the result from
first-order OPT is close to the harmonic one. However,
result from the second-order OPT agrees very well with
exact one. We then found that the result from the first-or
OPT with Legendre transformation is as good as the
from the second-order OPT. Since calculations from
second-order OPT are much harder, we used the first-o
OPT with the Legendre transformation for the rest of t
calculation. We then calculate the linear absorption sp
trum, which is the Fourier transformation of the two-tim
correlation function of the coordinate. It was shown that
temperature dependence of the peak shifts from the fi
order OPT since the trial action in the first-order OPT ha
different symmetry from the original action. We then disco
ered that the Legendre transformation based on the inver
method corrects such a problem. Although some featu
such as the existence of an overtone peak and the chan
peak width, are missing in the present calculation, the O
gives reasonable results.

In this paper we discussed the Morse potential sys
only. However, our approach can be applied to systems w
any shape of potentials. To study the dynamics of an an
monic system in a dissipative environment, we have so
three approaches: the perturbative diagrammatic appro
@35,36#, the quantum Fokker-Planck approach@13#, and the
present OPT approach. Each approach has advantage
disadvantages. For instance, the diagrammatic approac
straightforward. However, it may not be good for a syst
with strong anharmonicity. The quantum Fokker-Planck
proach is a powerful approach for studying the time evo
tion of a system with an arbitrary potential. Still, it can b
applied only for the high-temperature Gaussian white no
or Gaussian-Markovian noise cases. The present approa
complementary to the other approaches and has specia
vantages in the study of a system with strong anharmoni
at low temperature, where the other approaches fail. S
problems involving tunneling processes in a double well s
tem are left for future studies.

FIG. 5. These diagrams lead to the peak shift of the absorp
spectra. A dot and a line represent a system interaction vertex a
bare propagator~K! in Eq. ~64!, respectively.
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APPENDIX A: INVERSION METHOD

The general procedure of the inversion method is
plained in this appendix. Suppose that the HamiltonianĤ is
divided into two parts, the free part and the interaction p

Ĥ5Ĥ01gĤI , ~A1!

whereg is the coupling constant. We add the source term
Ĥ as

ĤJ5Ĥ2(
i

Ji Ôi ~A2!

to investigate the set of the nonperturbative states.
source term is chosen so as to give a nonzero perturba
series off i5^Ôi&, where the term in angular brackets ca
be the expectation value including the static or the time
pendent one. Notice here that it is not necessary for
source term to have the form( iJ

i Ôi . Then we can regard
our method as an extension of ordinary Legendre trans
mation formalism. In order to recover to the original Ham
tonian, the source is set to be zero at the end of the calc
tion.

Let us review the result of the inversion method belo
The generating functionalW@J# is expanded in the powers o
g,

W@J#5 (
n50

`

gnW@n#@J#. ~A3!

The expectation value ofÔi is obtained by

f i5^Ôi&5 (
n50

`

gn
]W@n#@J#

]Ji . ~A4!

By performing the Legendre transformation, the function
G@f# is written in the power series ofg as

G@f#5W@J#2(
i

Ji
]W@n#@J#

]Ji 5 (
n50

`

gnG@n#@f#.

~A5!

According to the identity of the Legendre transformation, w
obtain

n
d a

FIG. 6. These diagrams not only cause the peak shift but
overtone peaks.
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Ji52
]G@f#

]f i 52 (
n50

`

gn
]G@n#@f#

]f i . ~A6!

Following the procedure of the inversion method, E
~A3!–~A6! lead to

G@0#@f#5W@0#@J5h0
i #2(

i
h0

i f i , ~A7!

G@1#@f#5W@1#@J5h0
i #, ~A8!

G@2#@f#5W@2#@J5h0
i #1

1

2! (i , j W @1#
; i @J5h0

i #

3
d2G@0#@f#

df idf j W@1#
; j @J5h0

i #, ~A9!

and so on. Hereh0
i @f# is defined as

h0
i @f#5~ f 0

21! i@f#, ~A10!

that is, f 0
i
†h0@f#‡5f i ,

h0
i [2

dG@0#@f#

df i , f 0
i [

dW@0#@J#

dJi , ~A11!

and

W@1#
; i @J#5

]W@1#@J#

]Ji . ~A12!

The general forms ofhn
i andG@n# are given in@52#.

APPENDIX B: PROPAGATOR WITH A HEAT BATH

We show the relation between the result of@8# and the
propagatorKC(t,t8) derived from Eqs.~5.10!, ~5.13!, and
~5.14! below:

KR~ t2t8![K11~ t,t8!2K12~ t,t8!

5K21~ t,t8!2K22~ t,t8!

5u~ t2t8!
1

Mz
expS 2

g~ t2t8!

2 D sin@z~ t2t8!#

~B1!

5 R dz

2p i S 2
2

\
Â~z! Dez~ t2t8!, ~B2!

KA~ t2t8![K11~ t,t8!2K21~ t,t8!

5K12~ t,t8!2K22~ t,t8!5KR~ t82t !, ~B3!
.

K33~t2t8!5K33~ t,t8!

5
1

b (
n52`

` S 2
2

\

i

\
Â~ uvnu/\! D

3e2 ivn~t2t8!, ~B4!

K13~ t,t!5K23~ t,t!

5K31~t,t !5K32~t,t !5E
0

b

dt

3 R dz

2p i
eivntezt

2 i

\z1vn

3S 2
2

\
Â~z!1

2

\
Â~2uvnu/\! D , ~B5!

K1~ t2t8![
1

4
@K11~ t,t8!1K12~ t,t8!1K21~ t,t8!1K22~ t,t8!#

5 R dz

2p i
@u~ t2t8!ez~ t2t8!1u~ t82t !ez~ t82t !#

3S i

\
Ŝ~z! D , ~B6!

wherevn is defined byvn52pn/b and

z[Am2g2/4, ~B7!

Â~z!52
\

2M

1

m01z21zg
, ~B8!

Ŝ~z!5
2

b\ (
n52`

`
z

z22~vn /\!2
@Â~z!2Â~vn /\!#.

~B9!

The functionsÂ(z) andŜ(z) are given in@8# under the con-
dition that the quantityv0

2 in these functions is replaced wit
m in this paper.

APPENDIX C: FREE ENERGY AT ZERO TEMPERATURE

In this appendix we calculate the free energy withou
heat bath at zero temperature. The expressions of the ze
and first orders of thed expansion are given in Sec. V. From
Eq. ~3.8! the second-order contribution is calculated as
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Wd@2#@J#5
i

\

1

2
XEe

2E
C
ds ds8H expS 22aE

C
dt8@KC~s,t8!1KC~s8,t8!#J~ t8!1

\

i
2a2@KC~s,s!1KC~s8,s8!# D

3FexpS \

i
4a2KC~s,s8! D21G24 expS 2aE

C
dt8@KC~s,t8!12KC~s8,t8!#J~ t8!1

\

i
a2@ 1

2 KC~s,s!

12KC~s8,s8!# D FexpS \

i
2a2KC~s,s8! D21G14 expS 2aE

C
dt8@KC~s,t8!1KC~s8,t8!#J~ t8!1

\

i

1

2
a2@KC~s,s!

1KC~s8,s8!# D FexpS \

i
a2KC~s,s8! D21G J 2EeMmE

C
dsH expS 22aE

C
dt KC~s,t !J~ t !1

\

i
2a2KC~s,s! D

3F E
C
ds8S 2E

C
dt KC~s8,t !J~ t !1

\

i
2aKC~s,s8! D 2

2E
C
ds8S E

C
dt KC~s8,t !J~ t ! D 2G

22 expS 2aE
C
dt KC~s,t !J~ t !1

\

i

1

2
a2KC~s,s! D F E

C
ds8S 2E

C
dt KC~s8,t !J~ t !1

\

i
aKC~s,s8! D 2

2E
C
ds8S E

C
dt KC~s8,t !J~ t ! D 2G J 1

1

4
M2Ee

2E
C
dt dt8F2S \

i
KC~ t,t8! D 2

14
\

i EC
ds ds8KC~ t,s!J~s!KC~ t8,s8!J~s8!KC~ t,t8!GC. ~C1!
ich

ng
t

m

SubstitutingT50 into the propagatorsKC of Eqs. ~5.8!,
~5.17!, and~C1!, the free energy at zero temperature, wh
is derived fromFd52( i /\b)Wd

0, is given by

Fd5Fd@0#1Fd@1#1Fd@2# , ~C2!

Fd@0#5
1

2
\V, ~C3!

Fd@1#5EeH expS 2a2
\

2MV D22 expS 1

2
a2

\

2MV D J 2
1

4
\V,

~C4!

Fd@2#5
Ee

2

2\2 H expS 4a2
\

2MV DL~4a2!24 expS 5

2
a2

\

2MV D
3L~2a2!14 expS a2

\

2MV DL~a2!J
1

\Ee

8MV H 4a2 expS 2a2
\

2MV D
22a2 expS 1

2 a2
\

2MV D J 2
1

16
\V. ~C5!
Here we have introduced the functionL(x) defined by

L~x!5
2

\V S \

i D
2H Ēi S x\

2MV D2g2 lnS x\

2MV D J , ~C6!

whereĒi(x) is the related exponential integral andg is the
Euler constant.

After performing the Legendre transformation and usi
the relationFd52( i /\b)Gd

0, we obtain the free energy a
zero temperature in the form

Fd5Fd@0#1Fd@1# ~C7!

5
\V

2
2Ee expS 2a2

\

2MV D2
1

2
MV2

\

2MV
. ~C8!

As mentioned in Sec. III, the free energy is calculated fro
the above equation by obtaining the minimal pointm5m0 of
Eq. ~C2! or ~C8!. We present the numerical results for Cs2 in
Table I.
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